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Abstract. This paper presents a Lagrangian model for particle transport driven by a 2D shallow water model, assuming that

the particles have negligible mass and volume, are located at the free surface, and without interactions between them. Particle

motion is based on advection and turbulent diffusion, which is added using a random-walk model. The equations for particle

advective transport are solved using the flow velocity provided by a 2D shallow water solver and an online first-order Euler

method, an online fourth order Runge-Kutta method and an offline fourth order Runge-Kutta method. The primary objective of5

this work is to analyze the accuracy and computational efficiency of the numerical schemes and the algorithm implementation

for particle transport. To verify the accuracy and computational cost, several test cases inspired by laboratory setups are simu-

lated. In this analysis, the Euler online method provides the best compromise between accuracy and computational efficiency.

Finally, a localized precipitation event in the Arnás catchment is simulated to test the model’s capability to represent particle

transport in overland flow over irregular topography.10

1 Introduction

Over the past decade, floods have emerged as the most destructive natural disaster worldwide (Wallemacq et al., 2015; for

Research on the Epidemiology of Disasters , CRED), resulting in substantial and progressively increasing economic losses

(Formetta and Feyen, 2019; Ripple et al., 2020). Projections suggest that in the coming decades, both economic losses and

the number of individuals affected by floods are expected to rise (Dottori et al., 2018; OECD, 2016). This situation forces15

institutions to develop strategies and tools to predict and mitigate the damage caused by floods. Potential solutions range from

administrative policies based on practical actions (Nations, 2015; Olcina et al., 2016; Martin et al., 2010) to the development

of computational prediction tools (Bates et al., 2023; Thielen et al., 2009; Chen et al., 2009). In recent years, these predictive

tools, which rely on numerical simulations, have seen significant advancements in both accuracy and computational efficiency

(Sampson et al., 2015; Knijff et al., 2010; Lacasta et al., 2014). Some models are based on the two-dimensional Shallow Water20

Equations (SWE), offering accurate results with high computational efficiency (Xia et al., 2019; Morales-Hernández et al.,
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2021). However, the majority of models used for flood forecasting in rivers do not account for the transport of objects, such

as vehicles, waste containers and other urban flood drifters (Bayón et al., 2024), or wood, carried by the flow during flooding

events. This omission reduces the completeness of these tools, as object transport is a critical component of floods and can cause

obstructions in hydraulic structures within channels and streams, thereby exacerbating the damage during such events (Bayón25

et al., 2024; Valero et al., 2024; Lofty et al., 2024). Several studies have examined debris accumulation near weirs, culverts,

and dams, highlighting their significant impact on flood risk (Thomas and Nisbet, 2012; De Cicco et al., 2015). Moreover,

the transport of objects by geophysical flows is related to other issues, such as environmental accidents due to pollutant spills

in rivers and lakes (van Emmerik et al., 2022; Ivshina et al., 2015; Mellink et al., 2024), and environmental impact studies

concerning seed dispersion by precipitation in catchments (Zamora and Montagnini, 2007; Sánchez-Salas et al., 2017), among30

others.

The transport of objects by fluid flows has been extensively studied in recent years (Braudrick and Grant, 2000; Xia et al.,

2011; Martínez-Gomariz et al., 2020). These studies have led to the development of computational models for simulating the

transport of particles with negligible mass or volume (Finaud-Guyot et al., 2023), as well as contaminants and small objects

such as microplastics (García-Martínez and Flores-Tovar, 1999; Jalón-Rojas et al., 2019), sediments, bedload transport (Zhao35

et al., 2024; Baharvand et al., 2023), and macroscopic objects (Persi et al., 2018a, b). Debris transport can be analyzed using

either an Eulerian or a Lagrangian framework (Nordam et al., 2023). The Lagrangian approach offers detailed insights into

individual processes affecting debris, such as deposition, fragmentation, and degradation, and is particularly useful when the

number of debris particles is relatively low. On the other hand, the Eulerian approach provides a different approach by treating

debris as a concentration, offering greater computational efficiency than the Lagrangian method when the number of bodies is40

really high. However, the Eulerian description is inherently dispersive and does not account for the specific transport trajectories

of particles, thereby overlooking certain small-scale details (Cai et al., 2023).

In recent decades, numerous computational models have been developed to simulate particle transport. However, the majority

of these models are designed for coastal scenarios where challenging wet-dry transitions do not occur (García-Martínez and

Flores-Tovar, 1999; Lebreton et al., 2012; Liubartseva et al., 2018). Furthermore, some models update particle positions only45

at specific time intervals rather than at every time step, in order to reduce the high computational cost (Finaud-Guyot et al.,

2023). The main reason for using this kind of methods, commonly known as offline methods, is due to the non-presence of

dry-wet problem when they are used in marine environments. Thus, the inaccuracy of updating every certain period of time is

compensated by using higher-order models, such as a fourth-order Runge-Kutta method (García-Martínez and Flores-Tovar,

1999). An alternative approach is to determine the temporal evolution of material by solving the Eulerian advection-dispersion50

equation, thereby obtaining the changes in debris concentration over time (Baharvand et al., 2023; Schreyers et al., 2024;

Portillo De Arbeloa and Marzadri, 2024). While these models effectively capture the behavior of large quantities of small

debris, they are not suitable for large objects or scenarios involving a small number of material particles. Furthermore, some

Lagrangian models are implemented using three-dimensional hydrodynamic frameworks (Jalón-Rojas et al., 2019; Pilechi

et al., 2022), which provide more detailed flow information compared to two-dimensional and one-dimensional models, albeit55

at the cost of increased computational time.
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In addition to advection, turbulent diffusion can play an important role in the material transport, not only in water (Merritt

and Wohl, 2002; Molazadeh et al., 2024; Yang and Foroutan, 2023), but also in other environments such as wind (Horn et al.,

2012). Thus, it is interesting to add to the Lagrangian model of material transport some kind of minimal turbulence model to

achieve greater realism and accuracy in the numerical results (Jalón-Rojas et al., 2019; Liubartseva et al., 2018).60

Finally, in order to be effective, the computational model must be both accurate and computationally efficient. The balance

between computational efficiency and accuracy is crucial, particularly for operational prediction tools, where timely and reli-

able results are essential. In this context, two-dimensional hydrodynamic models offer a high degree of accuracy with lower

computational costs compared to three-dimensional models (Vacondio et al., 2016; Echeverribar et al., 2019).

This work represents an initial step towards a Lagrangian model for material transport in shallow water flows. The material65

simulated in this study are particles with negligible mass and volume that do not interact with each other, thus representing a

simplified case. The primary objective is to analyze the accuracy and computational efficiency of the numerical scheme and

the algorithm implementation for particle transport. The accuracy and efficiency of an explicit Euler method are compared

with those of a fourth order Runge-Kutta method. Additionally, these methods are evaluated both when applied at every

time step or iteration, and at specific iteration intervals. Furthermore, particles dispersion is incorporated into the Lagrangian70

model equations using a random-walk model because the hydrodynamic model does not resolve turbulence. All analyzes are

based on simulations of both analytical and laboratory test cases and realistic scenarios. The model is driven by an Eulerian

hydrodynamic framework based on the SWE to describe flow evolution. The implementation of these techniques is part of an

ongoing initiative to create a modeling framework grounded in physically-based hydrodynamics: the SERGHEI (Simulation

Environment for Geomorphology, Hydrodynamics, and Ecohydrology in Integrated form) model (Caviedes-Voullième et al.,75

2023). The code developed for this study is open-source and available at https://gitlab.com/serghei-model.

The structure of the paper is as follows: first, the governing equations for the hydrodynamic model and for the Lagrangian

model are presented; second, the numerical schemes and their details are presented; then, analytical, test and realistic cases are

simulated; and finally, the conclusions of the present work are shown.

2 Governing equations80

The equations flow are presented and subsequently, the equations corresponding to passive particle transport are discussed.

2.1 2D Shallow Water Equations

The hydrodynamic model characterizes surface flow through the hyperbolic 2D SWE system, which is based on the mass and

momentum conservation (Cunge et al., 1989):

∂h

∂t
+∇(hu) = r− i + e + Sw (1)85
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∂hu

∂t
+

∂

∂x

(
u2 +

1
2
gh2

)
+

∂(huv)
∂y

=−ghSfx− gh
∂zb

∂x
(2)

∂hv

∂t
+

∂

∂y

(
v2 +

1
2
gh2

)
+

∂(huv)
∂x

=−ghSfy − gh
∂zb

∂y
(3)

where h is the water depth [L], u = (u,v) is the velocity flow vector [LT−1], r is the precipitation rate [LT−1], i is the90

infiltration rate [LT−1], e is the evaporation rate [LT−1] and Sw denotes the flow rate [LT−1] provided by sources or sinks.

The gravitational acceleration is denoted by g [LT−2], zb is the bed elevation [L], and Sfx and Sfy are the friction slope terms,

defined as:

Sfx =
n2u

√
u2 + v2

h4/3
, Sfy =

n2v
√

u2 + v2

h4/3
(4)

being n the Manning’s roughness coefficient [TL−1/3] (Arcement and Schneider, 1984).95

2.2 Particle tracking equations

In a Lagrangian model of material transport, material elements are entrained and transported based on hydrodynamic forces,

computed with appropriate coefficients or following a kinematic approach. In this study, the transported particles act as passive

tracers: they have negligible volume and mass, do not interact with each other, and do not affect the flow field.

In the absence of turbulence, particle transport is driven by advection, and the particle trajectories are governed by the100

following system of equations that defines the position of each particle xp = (xp,yp,zp):





dxp

dt
= u(xp)

dyp

dt
= v(xp)

dzp

dt
= 0

(5)

As observed, the vertical position is unaffected by the flow velocity due to the depth-averaged SWE approximation, which

neglects the vertical velocity component. Consequently, the particle resides at the free water surface, which is the sum of

the water depth h and the bottom level zb. This condition prevents issues when the bottom elevation is irregular. Since the105

hydrodynamic model is vertically averaged, an average velocity for the flow is imposed on each cell, which could cause

particles located at different vertical positions to cross obstacles or walls. Moreover, the advection velocity depends on the

velocity field at the position of the particle at each time.

Turbulence effects in a flow can be significant and, by modifying the velocity field, also influence particle transport (Merritt

and Wohl, 2002). Therefore, if turbulence is not incorporated into the flow velocity, as it is in the hydrodynamic model of the110

SERGHEI framework (Caviedes-Voullième et al., 2023), it can be included in the particle velocity, as follows:

4

https://doi.org/10.5194/egusphere-2025-722
Preprint. Discussion started: 15 April 2025
c© Author(s) 2025. CC BY 4.0 License.







dxp

dt
= u(xp) +udisp(xp)

dyp

dt
= v(xp) + vdisp(xp)

dzp

dt
= 0

(6)

where vdisp = (udisp,vdisp,0) is the velocity induced by the dispersion, where it is considered a null dispersion velocity in

the vertical coordinate because of the lack of the advection velocity in the vertical. In this study, a random-walk model is

employed to simulate dispersion because of its simplicity and its great balance between computational efficiency and accuracy115

(Jalón-Rojas et al., 2019). This model proposes the vdisp as a function of the diffusivity coefficients Khx and Khy [L2T−1] in

the x- and y-,coordinates, respectively. In contrast to imposing constant values based on empirical results (Jalón-Rojas et al.,

2019; Peeters and Hofmann, 2015) that depends on the size and shape of the object, the diffusivity coefficients Khx and

Khy are here derived from a velocity-dependent expression, as turbulence is directly proportional to velocity. Therefore, the

standard anisotropic diffusion model (Morales-Hernández et al., 2019) is utilized to determine the diffusivity variables, with120

the following expressions:

Khx = ϵL|u∗|h(xp,yp), Khy = ϵT |u∗|h(xp,yp) (7)

where ϵL, and ϵT are the longitudinal and transversal dispersion coefficients [L2T−1] (Rutherford, 1994), respectively; and

|u∗| is the friction velocity:

|u∗|= n

√
g

v2
x + v2

y

(h(xp,yp))1/3
(8)125

3 Numerical schemes

The equations (1), (2) and (3) are solved using an explicit upwind finite volume scheme, which is based on the Augmented

Roe Riemann solver. We do not describe this approach here, but refer the reader to the relevant literature (Echeverribar et al.,

2019; Murillo and García-Navarro, 2010; Morales-Hernández et al., 2013), and the HPC implementation within SERGHEI

(Caviedes-Voullième et al., 2023).130

In this paper, several numerical schemes are explored to solve the particle equations systems.

3.1 Numerical scheme for the Lagrangian particles model

To obtain the temporal and spatial evolution of the particles, it is necessary to discretize the system of equations (5) when

turbulence is not considered, or system (6) when it is included. In passive particle tracking, particles are considered to have

negligible mass and volume, ensuring no interaction with each other or the flow, thereby maintaining unaltered flow properties135

such as density or viscosity. The choice of discretization method depends on the required accuracy. In this study, two methods

are utilized to discretize the equations governing particle trajectories: the forward Euler method and the Runge-Kutta method.
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3.1.1 Explicit forward Euler method

The temporal evolution of particle positions is obtained by considering the particles as mathematical points denoted by p,

which are advected in space x following a velocity field v. In this model, dispersion is not calculated within the hydrodynamic140

module, potentially leading to unrealistic particle transport if this phenomenon is not considered (Merritt and Wohl, 2002).

Although the flow still has no turbulence model, the dispersive effects of turbulence are modelled on the transport of particles.

These effects are added using a random-walk model, which can generate sufficient dispersion to introduce turbulent motion

(Rutherford, 1994):





xn+1
p = xn

p + ∆tnpun
i + Rn

p,x

(
2σ−1Kn

hx,i ∆tnp

)1/2

yn+1
p = yn

p + ∆tnpvn
i + Rn

p,y

(
2σ−1Kn

hy,i ∆tnp

)1/2

zn+1
p = hn

i + zb,i

(9)145

where the Eulerian velocity field vn
i is the velocity field in cell i at time step n, in which the particle p is located, i.e., contains

the point xp
n = (xn

p , yn
p , zn

p ), hn
i is the water depth in the cell i at time step n, zb,i is the bottom elevation of the cell i, and ∆tnp

is the particle time step. Rn
p,x and Rn

p,y are random numbers, which follow a uniform distribution with mean 0 and standard

deviation σ = 1. Kn
hx,i and Kn

hy,i are the horizontal diffusivity in x̂ and ŷ components, respectively, as defined by expression

(7).150

3.1.2 Runge-Kutta method

The primary limitation of the explicit Euler method is its first-order accuracy, which may result in significant deviations from

reality unless the time step for the Lagrangian model is sufficiently small (Bennett and Clites, 1987). Therefore, a higher-order

approximation is necessary to capture the spatial variation of the velocity field when a large time step is computed by the

numerical scheme. For this reason, a fourth-order Runge-Kutta method is presented for the advection formulation:155

xp
n+1 = xp

n +
∆tnp
6

(
v (xp, tn) + 2v

(
xp +

1
2
a,tn+1/2

)
+ 2v

(
xp +

1
2
b, tn+1/2

)
+v

(
xp + c, tn+1

))
(10)

where:

a = ∆tnp v (xp, tn) , b = ∆tnp v
(
xp +

1
2
a,tn+1/2

)
, c = ∆tnp v

(
xp +

1
2
b, tn+1/2

)
(11)

This method requires the velocity at intermediate times (tn+1/2), which is not directly calculated by the numerical scheme.

Therefore, a fourth-order interpolation is used to obtain it:160

vn+1/2(xp) =
5
16

vn+1(xp) +
15
16

vn(xp)− 5
16

vn−1(xp) +
1
16

vn−2(xp) (12)

6

https://doi.org/10.5194/egusphere-2025-722
Preprint. Discussion started: 15 April 2025
c© Author(s) 2025. CC BY 4.0 License.



Comparing the equations of both methods, it is evident that the higher accuracy of the Runge-Kutta method entails a higher

computational cost per time step than the explicit Euler method, as the Runge-Kutta method requires the velocity vector at four

different times and the calculation of additional terms to determine the trajectory evolution.

3.2 Trajectory algorithm165

The transport of the particle is governed by the advection. The trajectory can be determined directly from the initial cell to the

final cell (García-Martínez and Flores-Tovar, 1999; Bennett and Clites, 1987) (see red trajectory in Figure 1a), or the particle

can be moved cell by cell (see green trajectory in Figure 1b). The latter approach is compulsory for addressing potential dry-wet

interface issues and for preventing particles from traversing obstacles, as shown in Figure 1b.

(a) (b)

Figure 1. The two possible strategies for the trajectory of particles in absence of obstacles (a) and the same strategies when there is an

obstacle (gray cell) (b).

Thus, the algorithm that loops over the particles must be carefully designed to ensure that each particle traverses each170

computational cell discretely, dynamically adopting the local velocity and updating its position based on the discrete flow

velocities within each cell.

For that, let us consider a single particle p defined by its position xp in the same position of the point p = (px,py), which

is inside of cell i, with some velocity vi. Let d be the distance between the particle and the point at which the particle would

leave the cell when following the velocity within the cell, as shown in Figure 2a. In this figure, A and q are the respectively175

lower left and right corners (respectively) of the cell, b is the distance between q and the intersection edge point, and ê is the

unit vector of the Cartesian y-axis. The distance d is the minimum distance in the direction of the velocity vector v from the
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point p until it crosses an edge that separates one computational cell from the next. This distance is measured along the line

defined by the unit vector v̂.

(a) (b)

Figure 2. (a) Representation of a point p (particle position) in a generic cell and (b) a generic representation of the time steps for 2D model

and particles

In order to guarantee that the particle is not advected beyond cell i with the velocity vi, it is simple to see that a geometric180

restriction for the time step ∆tp of particle p is given by:

∆tp ≤
d

||vi||
(13)

This is fundamentally a CFL condition for the particle advection.

There is an additional restriction for ∆tp related to the hydrodynamic time step size ∆t:

∆tp ≤∆t (14)185

That is, the particle time step cannot be so large that it requires a future value of the Eulerian velocity field. However, if

∆tp < ∆t, another condition must be introduced to ensure that particles evolve as far as the the global hydrodynamic time

stepping allows. Therefore, if ∆tp < ∆t, an iterative sub-cycling process is carried out by calculating time steps ∆tp, m until

(Figure 2b):

∆t =
∑

m

∆tp, m (15)190

This may produce situations as that of the Figure 3, where the particle travels through 1, 2 or (at most) 3 cells within a single

2D time step ∆t.

Therefore, the restrictions for ∆tp are fully formulated as:

∆tp, m ≤min

(
d

||vi||
, ∆t−

∑

m

∆tp, m

)
(16)
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The time step restriction problem is therefore reduced to determining the distance d to the edge through which the particle195

will exit the cell.

(a) (b) (c)

Figure 3. Three possible situations for a particle: traveling through 1 cell (a), 2 cells (b), or 3 cells (c) final position.

The value of d is calculated as follows:

1. Given a line with with direction v̂ = v ||v||−1 passing through particle point p, find its intersection with the lines defining

the edges, and compute the distance d from p to the 4 intersection points: north, south, east and west intersections (see

Figure 2):200

p+ dv̂ = q+ bê (17)

Considering only the x-coordinate:

px + dv̂x = qx (18)

and therefore, if v̂x is not null:

d =
qx− px

v̂x
=

Ax + ∆x− px

v̂x
(19)205

where ∆x is the cell length in the x-coordinate, which, being a square cell, is equivalent to the length in the y-coordinate.

For cases where v̂x is null or negative, the distance d calculated using (19) does not yield the correct intersection. For this

reason, three additional distances d are calculated by employing a procedure analogous to that used for deriving (19):

d2 =
Ax− px

v̂x
if and only if v̂x ̸= 0 (20)

210

d3 =
Ay + ∆x− py

v̂y
if and only if v̂y ̸= 0 (21)
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d4 =
Ay − py

v̂y
if and only if v̂y ̸= 0 (22)

2. Discard negative distances as these are antiparallel to the velocity vector.

3. The minimum positive distance d corresponds to the correct intersection.215

Having computed d, it is possible to evaluate the particle sub-cycling time step (16), and with such time step advect the

particle with (6). This algorithm is used in both the Euler and Runge-Kutta methods.

Thus, the temporal evolution of the x and y-coordinates of particles are obtained by the proposed algorithm. With respect

to the z coordinate, assuming a passive particle tracking with negligible mass and volume for the particles, the value of the

water surface level of the cell where the particle is located is imposed, so it is floating in it. This approach and the use220

of the algorithm automatically resolve issues such as: (i) the wet/dry problem, provided the numerical method accurately

addresses these conditions for the flow; and (ii) wet/wet problems involving topographical changes, where a particle floating

at an arbitrary vertical position within a cell may encounter an adjacent cell with a higher elevation, preventing its movement

into that cell despite both cells containing water. This ensures that the particle’s movement is physically feasible and adheres

to the elevation constraints of the cells.225

Introducing a turbulent dispersion term can cause issues in the model in wet-dry cases, as a particle could find itself in a wet

cell due to advection and, by adding the dispersion term, reach a dry cell. Therefore, a restriction is added: if the cell to which

the particle would travel due to the addition of the turbulence term is dry, this term is not added.

3.3 Temporal integration modes

Depending on the desired accuracy of the results, different time intervals are proposed to update the evolution of the particles.230

When the particle advection is computed on every time step of the hydrodynamic solver (from n to n + 1), we say this is an

online mode. However, if the new position of the particle is calculated every certain number of hydrodynamic time steps nIter

(from n to n + nIter), we consider this an offline mode. We hypothesize that the online mode provides more accurate results

than the offline mode, but potentially with a higher computational cost due to a larger number of particle advection updates.

Conversely, using the explicit Euler method in an offline mode is ineffective, due to its lack of accuracy; therefore, the explicit235

Euler scheme is only employed in the online mode. In contrast, the Runge-Kutta method is suitable for both online and offline

modes.

3.4 Implementation in SERGHEI framework

The Lagrangian model for particles transport has been implemented in the SERGHEI framework, as a one of the several mod-

ules that have been implemented in this framework (see Figure 4).The SERGHEI framework is a modular and open-source240

simulation system designed to target performance portability across HPC (High-Performance Computing) platforms and stan-

dard workstations (Caviedes-Voullième et al., 2023). It focuses on future-proofing and sustainability while consolidating over
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a decade of mature numerical techniques for shallow water modeling. SERGHEI facilitates a modular, HPC-ready community

model, enabling broader collaboration. The framework moves beyond classical fluvial flooding and hydrograph generation to

address applications related to landscape function, transport, and integration into Earth System Models (ESM).245

Solid lines indicate operational modules
Dashed lines indicate modules in experimental stage

Kokkos

MPI

OpenMP

CUDA

SYCL

...

SWE
2D shallow 
water solver

Figure 4. Conceptual diagram for the SERGHEI modules and their implementation status.

The Lagrangian model has been developed along the same lines as the other modules in SERGHEI. In this way, this model

has been implemented in C++ and using the Kokkos performance-portability layer, which allows the simulation of the model

using any GPU architecture. As can be seen in Figure 5, the Lagrangian model is updated after updating the hydrodynamic

model, as it needs the updated information of the conserved variables. The implementation of the Lagrangian model for

distributed computations in progress.250

4 Results

The validation of the Lagrangian model is conducted through the simulation of several test cases with increasing complexity,

assessing both accuracy and computational efficiency. The simulations are run using a GPU NVIDIA GeForce RTX 3060.

4.1 Steady circular vortex case

Initially, a steady circular vortex test case is simulated to validate the model’s accuracy. The steady state implies that particles255

advected by the vortex should maintain a constant radius (Finaud-Guyot et al., 2023; García-Martínez and Flores-Tovar, 1999).

The circular vortex is simulated with varying cell sizes, ensuring the particle completed four full revolutions for consistency

in error measurement. The vortex radius is consistently set at R = 100 m, with a water depth of h = 0.1 m and no roughness

(n = 0). For this test, the hydrodynamic solver is turned off, so that the Eulerian flow fields (water depth and velocity) remained

constant and are not evolved over time, also resulting in a constant time step ∆t throughout the simulation. Turbulent diffusion260
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while 

SIMULATION START

Read hydrodynamic parameters

Read particles parameters

Set

Hydrodynamic updating:

Particles updating:

END OF SIMULATION

Figure 5. Schematic of the numerical calculation using the LPT module.

terms are excluded from the particle trajectory equations because this is an analytical case, and the objective is to guarantee

correctness and robustness of the advection. The Runge-Kutta offline method is updated every five hydrodynamic time steps.

The errors for each grid resolution using different numerical configurations are shown in Figure 6. The L1 norm for the error

at each time step is defined by:

L1(tn) = |xn
p− x̂| (23)265

where xn
p is the particle position at the time tn and x̂ is the analytical position. The L1 Norm integrated in time is the Mean

Absolute Error (MAE), which is obtained using:

MAE =
1
N

N∑

n=0

L1(tn) (24)

where N is the number of time measurements.

Additionally, the L2 Norm at each time step is defined as:270

L2(tn) = (xn
p− x̂)2 (25)
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while the Root Mean Squared Error (RMSE) is computed as:

RMSE =

√√√√ 1
N

N∑

n=0

L2(tn) (26)

Figure 6 shows that, under steady flow, the error of Runge-Kutta method is similar to the Euler method. The algorithm

implemented provides a reduced error for the Euler method because of the calculus of the trajectory in each cell (see Figure275

1) and in each time step. Moreover, the error of all methods depends strongly on the discretization of the domain, with lower

errors for smaller cell sizes. Figure 6 also shows the error reduction in the same order as the Euler method as the cell size is

reduced (order 1). However, for the Runge-Kutta method (order 4), the error is not observed to reduce with that order. This is

mainly because it is a stationary case and the value of the time step is fixed.

(a) (b)

Figure 6. Errors simulating the steady circular vortex case for the different numerical methods: normalized MAE (a) by the Euler error and

normalized RMSE (b) by the Euler error.

4.2 Transient test case280

Following the accuracy assessment, an analysis of computational efficiency is conducted using a well-known test case (see Fig-

ure 7a). The details of the experimental setup are described in (Soares-Frazão and Zech, 2008), where the domain dimensions

described are L = 36 m in length, B = 3.6 m in width. As the initial condition, an initial water depth of 0.4 m in the reservoir

region and 0 m in the right region are imposed, modying the value of the initial condition in the right region compared to the

original experiment to check the accuracy of the model when wet-dry situations occur. The comparative analysis is based on285

increasing the number of particles to evaluate the model computational cost for each configuration. Moreover, this case is used

as a validation of the model’s ability to correctly resolve wet-dry situations. Reflective boundary conditions are applied every-
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Table 1. Computational cost for different number of particles using the numerical methods implemented and the increase ratio between

simulation with particles and without particles, for the dam break test case.

Numerical method Number of particles Computational cost (s) Increase ratio

Euler 10000 13.15 1.08

Euler 100000 21.22 1.75

Euler 1000000 66.59 5.48

Runge-Kutta 10000 30.00 2.47

Runge-Kutta 100000 121.93 10.03

Runge-Kutta 1000000 1043.56 85.89

Runge-Kutta Offline 5∆t 10000 18.89 1.55

Runge-Kutta Offline 5∆t 100000 60.93 5.01

Runge-Kutta Offline 5∆t 1000000 474.24 39.03

where, maintaining a constant number of particles throughout the simulation. The Runge-Kutta offline method was updated

using different time periods (5∆t, 10∆t, 20∆t and 50∆t, where ∆t is the hydrodynamic time step) to analyze the influence of

this variable in the temporal evolution of the particles position.290

The computational costs for the different configurations with different particle numbers are shown in Table 1, where only

the Runge-Kutta offline computational costs updated every 5 time steps are shown because it is the less computationally

efficient case for the simulated Runge-Kutta offline combinations. The computational time for this simulation without particles

was 12.15 seconds, and an overhead ratio relative to the hydrodynamic-only run is computed for each case. The forward

Euler method consistently demonstrated shorter computational times compared to other methods across all configurations.295

Additionally, four states during the simulation are depicted in Figure 7, illustrating realistic particle trajectories simulated with

the Euler scheme without traversing dry cells or climbing over buildings. However, when the Runge-Kutta offline is updated

using long time periods, the temporal evolution of particles position can be illogical, as shown in Figure 8, where it can be seen

some particles climbing over buildings. Finally, the differences between the methods’ results are shown in Figure 9, where

the L2-norm per particle is derived from the differences between models, taking the Runge Kutta online method as the basis300

for comparison. The error between the Euler and Runge-Kutta methods is lower than the errors between the Runge-Kutta and

Runge-Kutta offline methods, indicating that the Euler method provides results more similar to the Runge-Kutta method while

maintaining higher computational efficiency. In addition, as the update time for the offline Runge-Kutta method increases, the

difference between the online Runge-Kutta and the offline Runge-Kutta increases too, due to the fact that being a transient

case, not updating frequently can lead to a high error.305
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(a)

(b) (c)

(d) (e)

Figure 7. Initial condition of the transient test case (a). States at t = 5s (b), at t = 10s (c), at t = 15s (d), and at t = 20s (e) for the Euler

method with 100000 particles in the dam break case.

4.3 Channel with cavities

A longitudinal channel with symmetrically shaped cavities was simulated, using a mesh with a resolution of 2x2 cm (see

Figure 10a). The objective is to check whether a symmetrical distribution of particles is achieved across the upper and lower

cavities (Vallés et al., 2023). 1000000 particles were simulated with an initial distribution as shown in Figure 10a. Given the
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Figure 8. State with particles climbing over buildings for the Runge-Kutta offline 50∆t.

Figure 9. Temporal evolution of the L2-norm per particle obtained from the difference between methods results.
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best compromise between accuracy and computational efficiency in the last test cases, the Euler method was only employed310

for this simulation. The temporal evolution of the particles position with and without turbulence was compared (see Figure

10), with the evolution of particle numbers in each pair of upper and lower cavities depicted in Figure 11. The presence of

turbulence resulted in greater dispersion in particle distribution and more realistic trajectories compared to simulations without

turbulence. This is further evidenced in Figure 11, where the number of particles within a cavity is higher when turbulence is

considered. The symmetry between the upper and lower cavities (see Figure 11), regardless of whether turbulence is added or315

not, provides a further argument for the accuracy of the Lagrangian model.

(a)

(b) (c)

(d) (e)

Figure 10. Initial condition for the cavities test case with 10000 particles with the numeration of the polygons (a). States with zoom at

t = 50s without turbulence (b) and with turbulence (c), and at t = 100s without turbulence (d) and with turbulence (e).
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(a) (b)

(c) (d)

Figure 11. Number of particles inside of the different cavities (cavities 1 and 5 in Figure (a), cavities 2 and 6 in Figure (b), cavities 3 and 7

in Figure (c), and cavities 4 and 8 in Figure (d)) for each iteration.

4.4 Example application: surface runoff in the Arnás catchment

The implemented Lagrangian model may have applications in ecohydrology, such as seed, pollutant, or nutrient transport.

Consequently, a case involving a precipitation event over the Arnás catchment was simulated to show the potential application

of this model. This catchment is located in the Borau valley (Northern Spanish Pyrenees). In the last decades, this region has320

been an area of exhaustive study of different hydrological processes (Lana-Renault et al., 2007; García-Ruiz et al., 2005). Phys-

ical processes such as rainfall, infiltration, runoff generation, and gully formation have been simulated in detail using various

methods (López-Barrera et al., 2011; Fernández-Pato et al., 2016; Vallés et al., 2024). The primary objective of simulating

this case was to assess its potential utility in environmental applications. Information derived from conservative tracers and
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field experiments measuring isotopes in water has been widely used in hydrology to characterize hydrological pathways and325

connectivity, with ideas such as transit or residence times, and travel time distributions (Benettin et al., 2022). Here, we show

a minimal example of how analogous ideas can be investigated within the computational modelling setting we propose.

The catchment was discretized at 5m resolution, for a total of 110000 computational cells. 10000 number of particles were

randomly placed in the domain as initial condition for the Lagrangian model, and the catchment was initially dry for the shallow

water solver.330

Two real precipitation cases (see Figure 13) were simulated to analyze the particle trajectory behaviour under different

hyetographs. The particles trajectories for the event 1 are shown for two states in Figure 14. As shown in these figure, particles

are mostly transported through the main gullies.

Runtime for the simulations of the events 1 and 2 were 317.75s and 177.02s respectively, providing an overhead of 2.39 and

1.10 compared to the same simulations without the particles.335

Additionally, the total travelled distance per particle, the particle travel time and the time during which the particle was

stationary are shown in Figures 15, 16 and 17 for each precipitation event. These figures provide a statistical overview of

particle dynamics during the runoff events. Physically, these metrics offer insights into the hydrological processes at play. The

covered distance reflects the efficiency of the drainage network of the basin to transport the debris, which can be seen in Figure

15b, where most of the particles travel a distance very similar to the initial one with respect to the outlet boundary condition.340

Moreover, it is observed in Figure 15a that a set of particles of event 2 travels much more than the rest of particles. This is

due to the properties of this precipitation event, being a less intense but longer event than event 1. This might cause travelling

particles for larger times (and smaller stop times), as also observed in Figure 17b. Furthermore, this stationary time histogram

reveals areas of stagnant transport, where particles are halted due to reduced flow velocities or topographical barriers, leading

to storage areas, or potential sediment deposition areas. However, as shown in Figure 16, the set of particles with high covered345

distances does not influence the last hours of the temporal evolution of the total covered distance (see Figure 16) because

in both events the majority of the particles go out the domain. However, the difference between the events are higher at the

beginning of the case, having a big difference between both hyetographs in the first hours. In event 1, the higher frequency

of particles compared to the event 2 with extended stationary times suggests intermittent flow conditions, possibly due to

intermittent rainfall, leading to temporary particle deposition. In contrast, event 2 exhibits more uniform movement and shorter350

stationary times, likely due to less intermittent rainfall that fosters persistent particle transport. Thus, these histograms not only

quantify particle behavior but also provide insights into the underlying hydrological and geomorphological processes shaping

the catchment’s response to precipitation events.

5 Conclusions

In this work, we presented a Lagrangian model for particle transport implemented within the SERGHEI framework. This model355

utilizes an algorithm that leverages information from each cell occupied by the particles and is solved using three methods: an

online first order Euler method, an online fourth order Runge-Kutta method, and an offline fourth order Runge-Kutta method.
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Figure 12. 3D representation of the Arnás catchment.
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Figure 13. Hyetograph 1 (a) and hyetograph 2 (b) for the Arnás case.

We studied convergence and accuracy of the solvers with a steady circular vortex benchmark case. All methods yielded

similar error metrics, with good grid convergence behaviour.

Subsequently, we conducted a transient test case without dispersive terms to assess the computational efficiency of the360

methods and to verify the accurate simulation of dry-wet conditions for the particles. The results indicate that the Euler method

is the most efficient, with smaller differences in performance compared to the Runge-Kutta methods. Moreover, as shown

in Figure 9, the Runge-Kutta offline method can result in incorrect trajectories because of the dry cells presence. Thus, we
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(a) (b)

Figure 14. States for the particles trajectories at the middle of precipitation event 1 (a) and at the end (b).

0 2 4 6 8 10 12
Covered distance (km)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
pa

rt
ic

le
s/N

to
ta

l

Event 1 Event 2

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Covered distance / Initial distance

10 4

10 3

10 2

10 1

N
pa

rt
ic

le
s/N

to
ta

l

Event 1 Event 2

(b)

Figure 15. Histograms of the covered distance (a) and the covered distance normalised by the initial distance between the particle and the

boundary condition position for both precipitation events (b).

conclude that the Euler method strikes the best balance between accuracy and computational efficiency, effectively addressing

potential dry-wet issues. The high accuracy of the Euler method is obtained because the time step for the numerical scheme is365

sufficiently small.

To investigate the impact of turbulence, we simulated a channel with multiple cavities both with and without turbulence.

The results illustrate that incorporating turbulence significantly alters particle trajectories, resulting in more realistic transport
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Figure 16. Temporal evolution of the total covered distance for both events.
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Figure 17. Histograms of the travel time (a) and the stop time (b).

dynamics. However, as it is shown in previous work (Vallés et al., 2024), the addition of the turbulence implies a relevant

increasing of the computational cost.370

Finally, the model was applied to a realistic case study of the Arnás catchment. The output generated by the model offers

significant insights for environmental applications. The results elucidate the mechanisms of particle transport during precipita-
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tion events and identify the primary gullies that facilitate this transport. Furthermore, this information provides critical insights

into the dynamics of particle movement, revealing distinct patterns in both movement and stationary times. These patterns

reflect the influence of varying precipitation intensities and can help on identifying sediment mobilization and deposition pro-375

cesses within the catchment. This analysis underscores the potential of such models to enhance our understanding of different

multiscale complex phenomena that take places in a catchment.

In summary, the Euler method delivers results comparable in accuracy to the other methods while offering superior compu-

tational efficiency. Furthermore, the Lagrangian model for particles transport effectively simulates realistic events by incorpo-

rating a minimal representation of turbulence, enhancing the realism of particle transport. Future work will focus on optimizing380

the model to further reduce computational costs and implementing multi-GPU simulations to leverage the capabilities of the

SERGHEI hydrodynamic model.

Code and data availability. SERGHEI is available through GitLab, at https://gitlab.com/serghei-model/serghei, under a 3-clause BSD li-

cense. SERGHEI v2.1.0 was tagged as the first release of the LPT module at the time of submission of this paper. Static code for v2.1.0 can

be found at https://doi.org/10.5281/zenodo.14871005 (Vallés et al., 2025b). This release does not include the Runge-Kutta solver. Static code385

for the experimental solution with Runge-Kutta integrators can be found at https://doi.org/10.5281/zenodo.14870918 (Vallés et al., 2025a).

A repository containing test cases is available https://gitlab.com/serghei-model/serghei-tests/lpt.
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